
Nautilus Documentation

July 20, 2024

Christophe Cossou, Alexandre Mechineau, Maxime Ruaud, Valentine Wakelam

2

CONTENTS 3

Contents
1 LICENSE and copyright 5

2 Historic of modifications 5

3 Introduction 6

4 Installation 6
4.1 Prerequisites . 6
4.2 Getting the Git repository . 6
4.3 Compilation . 6
4.4 Binaries . 7
4.5 Python script . 8
4.6 Examples . 8

4.6.1 Typical install . 8
4.6.2 Custom install . 8

5 Starting with Nautilus 9
5.1 Generic information . 9

5.1.1 Python scripts help . 9
5.1.2 Comments in input files . 9
5.1.3 Main parameter file . 9

5.2 Useful tools . 9
5.2.1 Cleaning a simulation folder . 9

6 Two and three phases model 9

7 Parameters_in 10
7.1 Automatic test before computation . 10
7.2 Simulation parameters . 11
7.3 Time evolution of the physical structure . 11
7.4 1D simulations . 12
7.5 Self-shielding . 13
7.6 Grain temperature . 13
7.7 Switches . 13
7.8 Gas parameters . 15
7.9 Grain parameters . 16

8 Chemical network 17
8.1 Reaction files . 17
8.2 Reaction types . 18

9 Input files 18

10 Output files 19
10.1 Information : info.out . 19
10.2 Abundances . 19

11 Graphic display 20
11.1 Plot abundances . 20
11.2 Compare abundances . 20
11.3 Evolution of main reactions for a given species . 20

12 For developers 21
12.1 Unitary tests . 21
12.2 How to write documentation with Doxygen . 22

12.2.1 General information . 22
12.2.2 For a module . 22
12.2.3 For a subroutine . 22

4 CONTENTS

12.3 How to generate Doxygen documentation . 23

Bibliography 23

2 HISTORIC OF MODIFICATIONS 5

1 LICENSE and copyright
The pnautilus gas-grain code has been developed at the Laboratoire d’astrophysique de Bordeaux by
a group of researchers led by Valentine Wakelam from the original code of Eric Herbst (Hasegawa et
al. 1992). Copyright is protected by the following license:

MIT License
Copyright (c) 2016 Valentine Wakelam
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

When publishing results obtained with pnautilus (and any modified version of it), the authors should
include the reference Ruaud et al. Monthly Notices of the Royal Astronomical Society, Volume
459, Issue 4, p.3756-3767. If we provide the code for external users of the group, we do not
provide any user support. If users want help, then they can contact us, but this will be done in the
context of a collaboration.

2 Historic of modifications
March 2022, V. Wakelam: Major modifications of nautilus:

• Changing the parameter files to remove some parameters and add a new one (is_chem_des to
choose between Garrod and Minissale’s formalism for the chemical desorption).

• For Minissale’s formalism, there are two possible models: one for bare grains and one for water
mantles. We added an automatic switch to switch from one to the other when the number of
monolayers of molecules on grains is 4.

• Diffusion induced by cosmic-rays (processes added by a former student L. Reboussin (see Reboussin
et al. 2014) was removed because it was not working any more).

• Modified rates from Caselli et al. (1992?) was also removed because it was obsolete and not working
anyway.

• For the diffusion by tunnelling effect, we have simplified by only keeping 3 cases (see later in the
document for explanations). We realized that one of the cases was not working.

• The sputtering of surface + mantle by cosmic-rays from Dartois et al. For the moment, the conser-
vative yields for water ices has been included. This is the new type of reaction 77. The reactions
need to be included in the chemical files.

• If the code is in 1D, then the cosmic-ray ionisation rate ζ is now read in 1D_static.dat.

• The directory example_simulations now possesses the recommended parameters and the latest
chemical files.

6

3 Introduction
Whether you are a developer or a user, you do not have the same expectations about this manual.

Be sure to carefully read the section about the installation [§ 4].
Chemical networks are presented in [§ 8 on page 17]. In this section, you will be able to learn about

the various types of reactions available and their format. A chemical network is given with the code, but
you can use your own.

Input files are presented in [§ 9 on page 18], but the most important one, the only one you will modify
daily (parameters.in) is dealt within [§ 7 on page 10].

Output files are presented in [§ 10 on page 19].
Simulation’s information are displayed in info.out (see [§ 10.1 on page 19]).
[§ 11 on page 20] explain what are the Python scripts that you can use to plot useful information

(mainly abundances) of your simulations (single plot or comparison between several runs).
One last section [§ 12 on page 21] presents technical specifications of the code and how to maintain

it.

4 Installation
4.1 Prerequisites
You will need 3 tools to be able to use Nautilus:

• Git (To fetch the code)

• Python

• Fortran compiler (we have tested only gfortran, but others should work as well)

4.2 Getting the Git repository
To start, you need to fetch the latest version of nautilus using *git*.

git clone https://forge.oasu.u-bordeaux.fr/LAB/astrochem-tools/pnautilus.git Nautilus
cd Nautilus

At this point, we assume that your current directory will be pnautilus. This current directory will
be referenced as NAUTILUS_DIR. You can get the complete path with pwd.

In your .bashrc, you can use the the content of the previous command such as:

export NAUTILUS_DIR=

On an existing repository, be sure to pull once in a while our updates if they exist.

git pull

We made multiple change on the git repository, if git pull don’t produce the expected result, you
may want to clone the repository to start from scratch.

4.3 Compilation
Now, we create a python environment to install the build tools and the nautilus scripts.

python -m venv .venv
source .venv/bin/activate

/.venv

https://git-scm.com/

4 INSTALLATION 7

The virtual environment will be located at:

$NAUTILUS_DIR/.venv

Finally install the python package declared by nautilus:

pip install ".[build-tools]"

This will give you access to the post processing scripts and the required build tools.
To build the code, we use a tool named CMake, this tools does what is called an out-of-source build.

It is the method of building the code in another directory than the one where the code is.

mkdir build && cd build

In this directory, we are going to choose the option that we want to use to compile/install the code.

cmake -G Ninja \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_INSTALL_PREFIX=.. \
..

Simply the previous command tells cmake that you want to build the code in release mode, while
using gfortran as a compiler. Next, we configure the installation prefix, i.e., where we want cmake to
create the bin directory during the installation. Here, the bin directory will be in the nautilus directory.
Finally, we specify where is the code that we want to build.

Now, build the code with the following:

cmake --build .

Then, to not have to search for the built binaries, we use cmake again to “install” our code.

cmake --install . -v

This will create a bin directory in the directory specified by -DCMAKE_INSTALL_PREFIX.

4.4 Binaries
The various binaries available in the directory bin/ are:

• nautilus_code

• nautilus_outputs

• nautilus_rates

• nautilus_major_reactions

To be able to call from any directory the previous binaries, you will need to add to your PATH
the path to the bin directory.

export PATH=<CMAKE_INSTALL_PREFIX>/bin:$PATH

Where <CMAKE_INSTALL_PREFIX> corresponds to the absolute path to the directory that you used to
configure cmake.

nautilus_code is the main program, the one computing the evolution of the chemical scheme. It
needs several input files described in [§ 9 on page 18]. This program will generate binary outputs that
are not readable by default.

nautilus_outputs will read the binary outputs of nautilus_code to generate the corresponding
ASCII outputs. More details on [§ 10.2 on page 19].

8 4.5 Python script

Using the ASCII outputs of nautilus_outputs, nautilus_rates generates two data files. ’rates.out’
contains the fluxes of all reactions (rate coefficients times densities of the reactants) at each time.
rate_coefficients.out contains the rate coefficients at each time.

To have a user-friendly interface to find the most crucial reactions depending on some parameters and
a given species, use the program nautilus_major_reactions. More details on [§ 11.3 on page 20].

Remark : All the programs must be run in the directory of the nautilus simulation. First nau-
tilus_code. Then nautilus_outputs. And then the two others if you want.

4.5 Python script
Multiple python scripts are provided, to use them you need to install the python package provided. Don’t
forget to activate this environment when you need to use those scripts.

pip install .

Remark : As always with Python, it’s better to use a virtual environment. (python -m venv .venv,
source activate .venv/bin/activate)

4.6 Examples
4.6.1 Typical install

This example follows the previous explanations

cd ~/Documents

git clone https://forge.oasu.u-bordeaux.fr/LAB/astrochem-tools/pnautilus.git
cd pnautilus

python -m venv .venv
source activate .venv/bin/activate
pip install .

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_INSTALL_PREFIX=.. \
..

cmake --build .
cmake --install . -v

At this point, you can add ~/Documents/pnautilus/bin to your PATH. You can try the provided
example as follows:

cd ~/Documents/pnautilus/example_simulation
Then, run the code:
../bin/nautilus_code # This will run the code by specifying the path to the executable
nautilus_code # or,if the PATH is updated, no need to specify the path at all

4.6.2 Custom install

For this example, we want to use a different build type, use the intel compiler and set the installation
prefix to /opt/nautilus.

cd ~/Documents

git clone https://forge.oasu.u-bordeaux.fr/LAB/astrochem-tools/pnautilus.git
cd pnautilus

6 TWO AND THREE PHASES MODEL 9

mkdir build && cd build

cmake -DCMAKE_BUILD_TYPE=Debug \
-DCMAKE_Fortran_COMPILER=ifx \
-DCMAKE_INSTALL_PREFIX=/opt/nautilus \
..

cmake --build .
cmake --install . -v

At this point, you can add /opt/nautilus/bin to your PATH. You can try the provided example as
follows:

cd ~/Documents/pnautilus/example_simulation
Then, run the code:
../bin/nautilus_code # This will run the code by specifying the path to the executable
nautilus_code # or,if the PATH is updated, no need to specify the path at all

5 Starting with Nautilus
5.1 Generic information
5.1.1 Python scripts help

From all the python scripts that come with the code, you can see all parameters and sometimes a few
examples by typing:

script_name help

5.1.2 Comments in input files

For all input files, the comment character is “ !” and can be either at the beginning of a line, or anywhere
else. Meaningful character must be comprised inside the 80 first characters of a given line.

5.1.3 Main parameter file

parameters.in is the main parameter file, and is rewritten by the code itself each and every time you run
the code.

5.2 Useful tools
5.2.1 Cleaning a simulation folder

The script nautilus-clean.sh helps you delete all output files to have a clean simulation folder.
To clean the current working directory, launch:

nautilus-clean.sh

6 Two and three phases model
Up to now, Nautilus was a 2-phase model only. It means that the surface chemistry was considered the
same for all adsorbed species. The two phases where then: gas and grain surface. Maxime Ruaud has
extended Nautilus to 3-phase: gas, surface and mantle using the same approach as Hasegawa and Herbst
[1993]. The main differences are:

- Species can only absorb on and desorb from the surface.

- The surface is the two first monolayers.

- Species can move slowly in the mantle and fast on the surface.

- Species can swap from the surface to the mantle and conversely.

10

- The competition between diffusion and reaction has been included (allowing for species to stay
longer to react).

In the current version, both 2-phase and 3-phase have the competition between diffusion and reaction
included. You can use the 3-phase version. The mantle is chemically active. To have the 2 phases on the
surface, a new kind of species has been added: KX species.

7 Parameters_in
For generic information, see [§ 5.1.2 on the previous page].

parameters.in has the particularity to be re-written each time you launch a Nautilus simulation. This
ensures several things:

• Parameters can be input in random ways, the code will sort them by categories

• New parameters, with default values will be added, to ensure retro-compatibility.

• A *.bak file is created before overwriting parameters.in, just in case it erases something important
(in comments for instance).

7.1 Automatic test before computation
In parameters.in:

preliminary_test = 1

When set to 1, the parameter preliminary_test will allow you to test thoroughly the chemical network
and print information in the file info.out.

Remark : This parameter should be set to 0 only in the case of an intensive campaign of simulations
using the very same network, to avoid wasting computation time doing the same tests. But in any other
cases, it is recommended to leave it activated, because it only takes around 1 second at the beginning
of the simulation.

The tests currently made are:

• Check that grain species judging from their indexes are indeed grain species.

• Check that all species have production AND destruction reactions (error if none, warning if only
one).

• Check that each reaction is balanced in prime elements and in charges.

• Display a warning for each reaction having alpha=0 (first parameter for reaction rate formula).

• Check that Tmin < Tmax for each reaction.

• Check that each gas neutral species has a grain equivalent (excluding GRAIN0 and XH).

• Check that each gas neutral species has an adsorption reaction (ITYPE=99) (excluding GRAIN0
and XH).

• Check that each grain species has at least one reaction for each of the following types: 15, 16, 66,
67 (desorption reactions).

• Check that all index ranges associated with a reaction type join themselves to cover all the index
range of all reactions.

For reaction with the same ID:

• Check that they have the same reactants and products

• Check that temperature ranges do not overlap. It does not check that the T ranges are comple-
mentary.

7 PARAMETERS_IN 11

7.2 Simulation parameters
is_3_phase = 0 ! 0: 2 phase, 1: 3 phase

This switch is used to switch from the 2-phase to the 3-phase mode (see section 6).

start_time = 1.000E+00

In years, the first output time of the simulation (all simulation starts from T = 0).

stop_time = 1.000E+01

End of the simulation in years (and also the last output time).

nb_outputs = 3

Total number of outputs (including start_time and stop_time). This number will be used when out-
put_type is log or linear.

output_type = log

Define the type of output you want. Possible values are linear, log, and table.

• linear: The spacing between the different output times will be linear

• log: The different output times will be log-spaced.

• table: The different output times are read from the file structure_evolution.dat. The parame-
ter nb_outputs is then completely ignored.

relative_tolerance = 1.000E-04

Relative tolerance of the solver.

minimum_initial_abundance = 1.000E-40

Default minimum initial fraction abundance applied to species whose abundance is not specified in abun-
dances.in.

7.3 Time evolution of the physical structure
is_structure_evolution = 1

If set to 1, the physical structure will evolve with time. This evolution will be read from the file struc-
ture_evolution.dat that must exist in the simulation folder. The times are read in this file by default
and do not need to be regularly spaced.

This file will have the following format:

! time log(Av) log(n) log(T)
! (yr) log(mag) log(cm-3) log(K)
0.000e+00 -1.231e+00 1.813e+00 1.698e+00
2.360e-01 -1.233e+00 1.758e+00 1.712e+00

We define respectively time, visual extinction, gas density and gas temperature.
Optionally, one can add a 5-th column to define also grain temperature:

! time log(Av) log(n) log(Tg) log(Td)
! (yr) log(mag) log(cm-3) log(K) log(K)
0.000e+00 -1.231e+00 1.813e+00 1.698e+00 1.500e+00
2.360e-01 -1.233e+00 1.758e+00 1.712e+00 1.510e+00

If so, the parameter grain_temperature_type must be set to:

grain_temperature_type = table_evolv

12 7.4 1D simulations

The grain temperature can, however, be also set to the other cases (fixed, gas or computed).
If one does not start the file with time = 0 yr, then the physical conditions of the first line are used at

time = 0. While constructing your file structure_evolution.dat, one has to keep in mind that the physical
parameters will be changed at the time indicated in the file while in the output the physical parameters
indicated at a specific time are the ones used to compute the chemical composition. Let’s assume the
following case:

! time log(Av) log(n) log(T)
! (yr) log(mag) log(cm-3) log(K)
1.000e+01 2.000e+00 4.300e+00 1.000e+00
1.000e+02 2.000e+00 5.000e+00 1.500e+00

At 100 yr, the model will change the physical conditions and will use log(n)=5 and log(T)=1.5 to
compute the chemical composition. But in the output, the physical parameters that will be written at
100 yr will be log(n)=4.3 and log(T)=1.0 because those are the ones that have been used to compute the
chemical composition.

See [§ 7.4] for incompatibilities.

7.4 1D simulations

You can make simulation in 1D:

structure_type = 1D_no_diff

The 1D physical structure is read in the input file 1D_static.dat where you define gas density, gas
temperature, visual extinction, and the dust temperature with the units indicated below. Format of the
file:

! Distance [AU] ; H Gas density [part/cm^3] ; Gas Temperature [K] ; Visual Extinction [mag] ;
! Dust Temperature [K] ; 1/abundance of grains ; AV/NH conversion factor ;
! radius of grains (cm) ! zeta_H2 (s-1)
3.353267e+04 5.545700e+02 1.413000e+01 1.850000e+00 0.000000e+00 1.446000e+01 0.000000e+00 0.000000e+00 0.000000e+00 1.070212e-16
3.252265e+04 6.316200e+02 1.418000e+01 1.910000e+00 0.000000e+00 1.441000e+01 0.000000e+00 0.000000e+00 0.000000e+00 1.034940e-16
3.151263e+04 7.222000e+02 1.421000e+01 1.960000e+00 0.000000e+00 1.437000e+01 0.000000e+00 0.000000e+00 0.000000e+00 1.007236e-16
3.050261e+04 8.292200e+02 1.423000e+01 2.030000e+00 0.000000e+00 1.431000e+01 0.000000e+00 0.000000e+00 0.000000e+00 9.707986e-17

The format of spacing between numbers does not need to be respected. In the input parameters.in
file, you have to specify the number of lines by changing the parameter: spatial _ resolution. The
spatial points do not have to be equally spaced. The code uses the physical structure provided and does
not interpolate or extrapolate. To allow for the computation of self-shielding (see sections 7.5 and 3.6),
the structure should start from the nearest point of the UV source.

The dust temperature is ruled by grain_temperature_type (see [§ 7.6 on the next page] for more
details). If something else than table_1D is set, then the dust temperature read in 1D_static.dat is
overwritten. Table_evolv is not compatible with this mode.

If the parameter is_dust_1D is set to one in the input parameters.in file, some of the grain param-
eters are read in 1D_static.dat. Column 6 gives the inverse of the abundance of grains. This is used by
the code to compute the number density of grains at each spatial point. Column 7 gives the AV to NH
conversion factor (that can depend on the radius of grains and the gas to dust mass ratio). This is used
in the code to convert the NH column density into AV for self-shielding (this parameter may change if
you are changing the gas to a dust mass ratio). Column 8 gives the radius of the grains in cm. This
option was introduced in the code to simulate different gas-to-dust mass ratios and different radius of
grains for disk applications. If is_dust_1D is set to 0 then only one value for the gas-to-dust mass ratio
and one size of grains is assumed for all the points and given in 1D_static.dat. The last column gives
the cosmic-ray ionisation rate. In 1D, ζ needs to be given here.

1D simulations are not compatible with time evolution read from a data file (see [§ 7.3 on the
preceding page]). You must choose one or the other.

7 PARAMETERS_IN 13

7.5 Self-shielding
UV photons are absorbed by dust grains at all wavelengths. Some species can also significantly absorbe
at specific wavelength and then decrease their own photodissociation rates and even the ones of others.
This is what we call self-shielding [see for instance van Dishoeck and Black, 1988]. How is it taken into
account in Nautilus?

In the code, the following self-shielding approximations are provided: H2 and CO self-shielding
from Lee et al. [1996], CO self-shielding from Visser et al. [2009], and N2 self-shielding from Li et al.
[2013]. In the prescription by Lee et al. [1996], the H2 self-shielding depends on the H2 column densities,
whereas the one for CO depends on the H2 and CO column densities as well as the visual extinction.
For Visser et al. [2009], the CO self-shielding depends on the CO and H2 column densities, whereas for Li
et al. [2013], the N2 self-shielding depends on H2 and N2 column densities.

In 0D and for the first point of the 1D structure (the nearest point from the UV source), the pho-
todissociation rates are computed depending on the local abundances and visual extinction provided in
the file parameters.in. The species column densities are computed at each output time by the formula:

Ni =
Av

5.34x10−22
Xi

Ni is the species column density in cm−2, Av is the visual extinction, 5.34x10−22 is the factor of conversion
of visual extinction to total H column density [in cm2, see for instance Wagenblast and Hartquist, 1989],
and Xi is the local abundance of the species.

For the other points of the 1D structure, the species column densities between the UV source and the
considered point is computed. For each spatial point x, the column densities Ni are computed using:

Ni(x) = Ni(x− 1) + nH(x) ∗ (d(x)− d(x− 1)) ∗Xi(x)

with nH(x) the H density at the point x (in cm−3, d the distance in cm read in the 1D_static.dat file
(so d(x) - d(x-1) is the size of your cell), and Xi(x) the abundance of your species at the point x.

7.6 Grain temperature
You have four ways of defining grain temperature in the code. The parameter grain_temperature_type
can have the following values:

fixed The grain temperature is fixed throughout the simulation. initial_dust_temperature defines this
fixed value;

gas The grain temperature is equal to the gas temperature, no matter what.

computed The grain temperature is calculated following an energy equilibrium with the gas in the
structure

table_evolv The grain temperature is interpolated from the 5-th column of the structure_evolution.dat
file. is_structure_evolution must be set to 1.

table_1D The grain temperature is read in the 1D_static.dat file for 1D structures (the 5-th column).

computed Calculates the grain temperature from uv_flux and visual extinction by radiative equilibrium.
See Ruaud et al. [2018] for explanations.

7.7 Switches
• To activate (or not) accretion on dust grains and grain surface reactions:

is_grain_reactions = 1

14 7.7 Switches

Remark : In that mode, the H2 adhoc formation (see below) is by default on.

• To force ad-hoc formation of H2 on grain surface:

is_h2_adhoc_form = 1

Remark : The ad-hoc formation of H2 on grain surface assumes that each accretion event of
two H atoms leads to the formation of H2. In this prescription, when the ad-hoc H2 formation is
activated, 50% of the adsorbed H are available for grain reactions (other than H2 formation) and
50% for the formation of H2. You may want in some cases to force it when the grain temperature
is too high to allow for the H2 to form. Nautilus does not include all possible formation processes
of H2 on the dust.

• To activate (or not) the photodesorption of ices:

is_photodesorb = 1

Remark : The default treatment of photodesorption assumes that all-species desorb with the
same yield that is provided in the chemistry files. These yields can be changed.

• To activate (or not) the Eley-Rideal and complex induced reaction mechanisms [Ruaud et al., 2015]:

is_er_cir = 1

• To activate (or not) the self-shielding of H2, CO and N2 related to visual extinction:

is_absorption_h2 = 1

Different types are:

0 : H2 self-shielding is disabled
1 : H2 self-shielding from Lee et al. [1996]

is_absorption_co = 1

Different types are:

0 : CO self-shielding is disabled
1 : CO self-shielding from Lee et al. [1996]
2 : CO self-shielding from Visser et al. [2009]

is_absorption_n2 = 1

Different types are:

0 : N2 self-shielding is disabled
1 : N2 self-shielding from Li et al. [2013]

• To activate (or not) grain tunneling diffusion and choose the type of grain tunneling diffusion:

7 PARAMETERS_IN 15

grain_tunneling_diffusion = 0

Different types are:

0 : Diffusion through thermal hopping for all species [Hasegawa et al., 1992]
1 : Quantum tunneling diffusion rate for H and H2 only if faster than thermal hopping [Hasegawa

et al., 1992]
2 : Quantum tunneling diffusion rate for all species depending on their mass. With the large

binding energy of O on ices proposed by new experiments, the oxygen does not move on the
surface anymore. Some other experiments have proposed that O can diffuse by tunneling
effect. So if you are using a O binding of 1600K, put this parameter to 4. See Wakelam et al.
[2017] for details and references on the experiments.

• To choose whether or not we can modify some abundances (this doesn’t work in 1D, because of
diffusion !):

conservation_type = 0

Different types are:

0 : Only electrons conserved
1 : element #1 conserved + electrons
2 : element #1 and #2 conserved + electrons
n : element #1. . . #n conserved + electrons

Remark : This was added to assure the conservation of charges and elements during the calculations.
I guess this was included in the past because of numerical problems. the test that is done is simply to
change the abundance of electrons or atoms according to the sum of charges and/or elements (over all
species). CHECK WHAT ARE ELEMENTS 1 AND 2. In practice, the default value for this switch is
0.

7.8 Gas parameters
initial_gas_density = 2.000E+04

initial gas density in particule/cm3 is the total density of protons: nH = n(H) + 2n(H2).

initial_gas_temperature = 1.000E+01

initial gas temperature in K

initial_visual_extinction = 1.500E+01

initial visual extinction in magnitude

cr_ionisation_rate = 1.300E-17

cosmic ray ionization rate in s−1. A standard value is 1.3 · 10−17.

x_ionisation_rate = 0.000E+00

Ionisation rate due to X-rays in s−1. This is not yet used in the code yet.

uv_flux = 1.000E+00

Scale factor for the UV flux, in unit of the reference flux. By choosing 1, you will use the nominal value.

16 7.9 Grain parameters

7.9 Grain parameters
initial_dust_temperature = 1.000E+01

initial dust temperature in K, used when grain_temperature_type is fixed.

initial_dtg_mass_ratio = 1.000E-02

Total mass of dust divided by total mass of gas (dimensionless).

sticking_coeff_neutral = 1.000E+00

sticking coefficient for neutral species. Exceptions are made for for H and H2 sticking coefficient from
Chaabouni et al. [2012].

sticking_coeff_positive = 0.000E+00

sticking coefficient for positive species. This parameter will not be used unless sticking reactions by
cations on grains are added to the chemistry.

sticking_coeff_negative = 0.000E+00

sticking coefficient for negative species. This parameter will not be used unless sticking reactions by
anions on grains are added to the chemistry.

grain_density = 3.000E+00

mass density of grain material in g/cm3

grain_radius = 1.000E-05

grain radius in cm.

diffusion_barrier_thickness = 1.000E-08

Thickness of the barrier in cm that a surface species need to cross while undergoing quantum tunneling
to diffuse from one surface site to another. This is used in the formalism [Hasegawa et al., 1992, see
equation 10 (parameter a)]. In case of grain_tunneling_diffusion = 2, we advise to used a slightly larger
value of 2.500E-08 to limit the impact of the diffusion.

surface_site_density = 1.500E+15

density of sites at the surface of the grains in number/cm2.

diff_binding_ratio_surf = 4.000E-01

Ratio (adimensioned) used to compute the DIFFUSION_BARRIER from the BINDING_ENERGY if
not known for surface species. For the 2 phase model, only this value is used.

diff_binding_ratio_mant = 8.000E-01

Ratio (adimensioned) used to compute the DIFFUSION_BARRIER from the BINDING_ENERGY if
not known for mantle species. Used for the 3 phase model.

chemical_barrier_thickness = 1.000E-08

Parameter (in cm) used to compute the probability for a surface reaction with activation energy to occur
through quantum tunneling. This is the thickness of the energy barrier [Hasegawa et al., 1992, See
equation 6].

cr_peak_grain_temp = 7.000E+01

Peak grain temperature in K when struck by a cosmic ray.

cr_peak_duration = 1.000E-05

8 CHEMICAL NETWORK 17

duration [s] of peak grain temperature

Fe_ionisation_rate = 3.000E-14

(cosmic) Fe-ion–grain encounter [s−1grain−1] for 0.1 micron grain. For cosmic photo desorptions, only
Fe-ions are efficient to heat grains.

vib_to_dissip_freq_ratio = 1.000E-02

(dimensionless) For the RRK (Rice Ramsperger-Kessel) desorption mechanism. Ratio of the vibration
frequency (proper energy of a species when it is created on a grain) to the dissipation frequency (energy
needed by the molecule to be evaporated from the grain surface). This ratio help to determine if a species
evaporate after its formation on the grain surface. Since the dissipation frequency is usually unknown,
this ratio is a free parameter. A common value is 1%.

ED_H2 = 2.300E+01

H2 binding energy over itself. Used for the desorption encounter mechanism. in K.

8 Chemical network

8.1 Reaction files
The files concerned are: gas_reactions.in, grain_reactions.in and activation_energies.in

A typical reaction line is:

1 ! Reactants -> Products
A B C

xxxxxxxxxxxxxxxxxxxxx ITYPE Tmin Tmax formula ID xxxxx
2 C+ CH2OH -> CH2+ HCO

7.500E -10 -5.000E -01 0.000 E+00 0.00e
+00 0.00e+00 NA 4 10 280 3 6098 1 1

The reaction displayed here is:

C+ +CH2OH → CH2
+ +HCO

The temperature range is T ∈ [10; 280]K. The type of reaction is 4. The ID of the reaction is 6098. The
formula used to compute reaction rate is 3, with the 3 parameters A = 7.5 · 10−10, B = −0.5 and C = 0.
The corresponding formula can be found on the KIDA website (https://kida.astrochem-tools.org/
help.html). Other columns are ignored, as the “xxx” emphasised in the legend line associated.

Each species name is encoded with 11 characters.
All reaction files have the same format. Depending on the evolution of the code, the number of

reactants (MAX_REACTANTS) or products (MAX_PRODUCTS) may vary (increase), so these files must be
modified to take that into account.

The following global variables (in the source code) are here to tell the code that these numbers have
changed.

1 MAX_REACTANTS = 3 !< The maximum number of reactants for one reaction .
2 MAX_PRODUCTS = 5 !< The maximum number of products for one reaction .
3 MAX_COMPOUNDS = MAX_REACTANTS + MAX_PRODUCTS !< Total maximum number of compounds for

one reaction (reactants + products)

Pay attention to the fact that some things might need manual modifications in the code. If this
number changes, get_jacobian(N, T, Y, J, IAN, JAN, PDJ) must be actualized, since each reactant
and product has its own variable, a new one must be created for the new column possible.

https://kida.astrochem-tools.org
https://kida.astrochem-tools.org/help.html
https://kida.astrochem-tools.org/help.html

18 8.2 Reaction types

8.2 Reaction types
Chemical reactions can be of several types.

Here is the list:

0 Gas phase reactions with GRAINS

1 Photodissociation/ionisation with cosmic rays (CR)

2 Gas phase photodissociations/ionisations by secondary UV photons generated by CR

3 Gas phase photodissociations/ionisations by UV

4-8 Bimolecular gas phase reactions - several possible formula

10-11 H2 formation on the grains when IS_GRAIN_REACTIONS=0

Remark : Only one reaction for each of the two types (10 and 11).

14 Grain surface reactions

15 Thermal evaporation

16 Evaporation induced by cosmic-ray stochastic heating

17-18 Photodissociations by Cosmic rays induced UV photons on grain surfaces

19-20 Photodissociations by UV photons on grain surfaces

30 Eley-Rideal (low temperature)

31 Reactions of complexes: JX. . . Y -> JXY

40 Swapping reactions J -> K

41 Swapping reactions K -> J

66 Photodesorption by external UV

67 Photodesorption by UV induced by cosmic rays

77 Cosmic-ray sputtering

99 Adsorption on grains

For Photodissociations, there are two types for each process because: photodissociations on the sur-
faces are based on their equivalent in the gas. In the can, there can be photoionisations. We do not
consider ions on the surfaces because grains are usually negatively charged so that any cation produced
on the surface would recombine quickly. So for the equivalent of photoionisations on the surface would
have the rates of photoionisations in the gas-phase but the products of the electronic recombination.
ITYPES 18 and 20 are the grain equivalent of the gas-phase photoionisations.

For Cosmic-ray sputtering, see Wakelam et al. [2021] for details.

9 Input files
All input files have the same *.in extension. An example simulation, containing all necessary input files
is provided in the sub-folder example_simulation.

The main parameter file is parameters.in (see [§ 7 on page 10]). In this file, you set many switches
for the surface processes and the physical parameters in 0D.

abundances.in gives the initial abundances for a set of species that the user chooses. Default mini-
mum values are applied to the species not present in this file (this value is set by the parameter mini-
mum_initial_abundance in parameters.in (see [§ 7 on page 10]).

element.in gives information about prime elements (base elements used to construct molecules) existing
in the simulation (name and mass in Atomic mass unit).

There are 2 parameter files listing all reactions in a given phase (gas or grain):

10 OUTPUT FILES 19

• gas_reactions.in

• grain_reactions.in

and 2 parameter files for species present in a given phase (gas or grain) reactions:

• gas_species.in

• grain_species.in

Remark : gas_reactions.in is in the same format as the kida.uva gas-phase network and only contains
gas-phase reactions while grain_reactions.in mostly contains reactions for grain surfaces (as well as
adsorption and desorption reactions) + a few gas-phase reactions for species not included in kida.uva.

activation_energies.in provides activation energies for some surface reactions.
surface_parameters.in provides parameters for species on the surfaces: masses, binding energies, etc.
In the directory , there are several versions of these input files that have been updated over the time.

10 Output files

All output files have the same *.out extension.

Output files are:

• info.out: Various information about the simulation (see [§ 10.1] for more details)

• species.out: The list of species and their corresponding index

• elemental_abundances.out: The prime elements abundance and mass at the beginning of the sim-
ulation. A *.tmp version displays the same info, but at the last output.

• abundances.*.out: In binary format (unformatted), abundances of all species, each file for a different
output time. nautilus_outputs read these files to generate ASCII files (see [§ 10.2] for more details).

• rates.*.out: In binary format (unformatted), rates of all reactions, each file for a different output
time. nautilus_rates and nautilus_major_reactions analyse these files.

• col_dens.*.out: In ascii format, column densities of H, H2, CO and N2 at each time step used for
the self-shielding.

• abundances.tmp: The abundance of all species at the last output in ASCII.

10.1 Information : info.out
In the file info.out, the ID reference of the current version of nautilus, used to run the simulation is
printed, as well as other useful information about the state of Nautilus and how the simulation was
executed.

Information and warnings about the coherence of the chemical network are also printed here.

10.2 Abundances
Files are named abundances.000001.out and so on, for each output time. Outputs are stored in binary
format. Binary format is not detailed here. If you want details about variables in there, please refer to
the Fortran routine write_current_output in the file input_output.f90

To get ASCII files from the binaries, one must compile the designed program (in the Git repository):

Makefile.py output

Then, in your simulation folder, type:

nautilus_outputs

20

(this assume you modified your PATH, but absolute path also work)
This program will generate *.ab files in a subfolder ab of the simulation folder. If in 1D, a file space.ab

will store the spatial points. Indeed, each species file will now have one column for time, and one column
per spatial point.

The program will also generate *.struct files in a subfolder struct of the simulation folder, one file
per spatial point.

11 Graphic display
Python scripts were created to help the user display useful information about their simulations.

11.1 Plot abundances
The script nautilus-plot-abundances allow you to display the time evolution of the abundances of one or
more species:

nautilus-plot-abundances species=CO,H20

You can zoom in a given period of time (tmin, tmax or both):

nautilus-plot-abundances species=CO,H20 tmin=1e4 tmax=1e6

Even if you can modify and store the result in the graphic windows displayed, a default version is
automatically written in abundances.pdf

Check the other options and detailed examples via:

nautilus-plot-abundances help

11.2 Compare abundances
The script nautilus-compare-abundances allow you to display the time evolution of the abundances of
one or more species for all subfolders of the current working directory, assuming each one is a simulation:

nautilus-compare-abundances species=CO,H20

If there are a lot of subfolders, you can select those you want by:

nautilus-compare-abundances species=CO,H20 dir=simu1,simu2

All options existing for nautilus-plot-abundances apply here.
Even if you can modify and store the result in the graphic windows displayed, a default version is

automatically written in compare_abundances.pdf
Check the other options and detailed examples via:

nautilus-compare-abundances help

11.3 Evolution of main reactions for a given species
The script nautilus-trace-species allow you to display the time evolution of the main production and
destruction reactions for a given species:

nautilus-trace-species species=CO2

You need to run in the same simulation folder the program:

nautilus_trace_major

That will generate 4 files:

• trace_prod_CO2.percentage data file for the python script (production reactions)

• trace_prod_CO2.reaction Tells the exact reaction corresponding to the ID displayed in the
python script (production reactions)

• trace_dest_CO2.percentage data file for the python script (destruction reactions)

12 FOR DEVELOPERS 21

• trace_dest_CO2.reaction (destruction reactions)

Even if you can modify and store the result in the graphic windows displayed, a default version is
automatically written in major_reactions_CO2.pdf

Check the other options and detailed examples via:

nautilus-trace-species help

12 For developers
Constants and global variables are defined in the module global_variable.f90. nautilus_main.f90
contains all the main routines.

The four main programs are:

• nautilus in the source file nautilus.f90 (compilation: cmake --build . --target nautilus_code)

• nautilus_outputs in the source file nautilus_outputs.f90 (compilation: cmake --build . --target nautilus_outputs)

• nautilus_rates in the source file nautilus_rates.f90 (compilation: cmake --build . --target nautilus_rates).

• nautilus_major_reactions in the source file nautilus_major_reactions.f90 (compilation:
cmake --build . --target nautilus_major_reactions).

One last program exists to do some unitary tests on Nautilus (see [§ 12.1] for more details).
A lot of routines are handled by pointers. This allows us to change easily from one routine to another

in function of the parameters. Thus, some routine names (in call) might not exist as is. They are defined
in global_variable.f90. For each pointer, an interface is defined that constrains the architecture of
each subroutine he can point to.

12.1 Unitary tests

This section has not been ported to cmake.

A fortran program unitary_tests (unitary_tests.f90) was specifically designed to test some routines
of the code separately. This is the main reason why a nautilus_main.f90 file was created because we
need to access these routines separately from the nautilus program.

To run the unitary tests, use the Python script designed for that (he will compile the source code
too):

unitary_tests.py

The code will display some information and ask you what test you want to display graphically (and
generate the corresponding .pdf):

0 : av_interpolation
1 : density_interpolation
2 : gas_temperature_interpolation
3 : grain_temperature_interpolation
4 : test_av_read
5 : test_density_read
6 : test_gas_temperature_read
What test do you want to display? (0-6 ;
’all’ treat them all ; ’l’ display list again)

The principle of this code is to do some tests, store the results in data files, generate Gnuplot script
files associated. To get the plots, you only have to generate it by:

gnuplot script_name.gnuplot

All files generated by the program are stored in the “test” subfolder. You can generate the .pdf
manually if you are familiar with Gnuplot, and view them separately.

22 12.2 How to write documentation with Doxygen

Remark : It is up to you to write new routines in unitary_tests.f90 and mimic the way I wrote
the previous one to test new functionality of the code.

Please keep in mind that you need to add a call new_routine() in the main program, just be-
fore contains to ensure your routine is executed.

12.2 How to write documentation with Doxygen
12.2.1 General information

Doxygen comments generally have a marker and the description. The character to declare the marker
is @, but one needs to start the commented line by > to declare there is something here.

If this is an inline comment, with the code on the left, comments are like this:

the code !< the doxygen description

just to say that the description refers to the code on the left.
To continue a description on another comment line, you can double the comment character:

!> @brief I describe something
!! on several lines.

Remark : This will not make two lines in the generated documentation though. This is only a way
to avoid never-ending lines with thousands of characters.

12.2.2 For a module

Start the module file with:
1 ! **
2 ! MODULE : Module Name
3 ! **
4 !
5 !> @author
6 !> Module Author Name and Affiliation
7 !
8 ! DESCRIPTION :
9 !> @brief Brief description of what can be done in this module .

10 !! This description can be on several lines .
11 !! \n\n Do not forget the symbol "\n" to create a new line.
12 !
13 ! **

12.2.3 For a subroutine

Before the definition of the routine, add the following text:
1 ! %%%
2 !> @author
3 !> Routine Author Name and Affiliation .
4 !
5 ! DESCRIPTION :
6 !> @brief Brief description of routine .
7 !! Flow method (rate of change of position) used by integrator .
8 !! Compute \f$ \frac{d\ lambda }{ dt} , \frac{d\phi }{ dt}, \frac{dz }{ dt} \f$ }
9 !

10 ! %%%

In the rest of the routine, remember to add comments for input and outputs of the routine:
1 implicit none
2
3 ! Inputs
4 real (double_precision), intent (in) :: delta_t ! <[in] description
5
6 ! Outputs
7 integer , intent (out) :: istate ! <[out] Description of the variable
8 !! that can be continued on another line.
9

BIBLIOGRAPHY 23

10 ! Inputs / Outputs
11 real (double_precision), intent (inout) :: time !< [in ,out] description
12 !! \n Continuation line.
13
14 ! Locals
15 real (double_precision) :: t !< The local time , starting from 0 to delta_t

12.3 How to generate Doxygen documentation
To generate Doxygen documentation, type the following command inside your build directory:

cmake --build . --target doc

The doc is then available inside your build directory at doc_doxygen.
Moreover, Doxygenis configured at doc/doxygen.conf.

Bibliography
H. Chaabouni, H. Bergeron, S. Baouche, F. Dulieu, E. Matar, E. Congiu, L. Gavilan, and J. L. Lemaire.

Sticking coefficient of hydrogen and deuterium on silicates under interstellar conditions. A&A, 538:
A128, February 2012. doi: 10.1051/0004-6361/201117409.

T. I. Hasegawa and E. Herbst. Three-Phase Chemical Models of Dense Interstellar Clouds - Gas Dust
Particle Mantles and Dust Particle Surfaces. MNRAS, 263:589, August 1993.

T. I. Hasegawa, E. Herbst, and C. M. Leung. Models of gas-grain chemistry in dense interstellar clouds
with complex organic molecules. ApJS, 82:167–195, September 1992. doi: 10.1086/191713.

H.-H. Lee, E. Herbst, G. Pineau des Forets, E. Roueff, and J. Le Bourlot. Photodissociation of H_2_
and CO and time dependent chemistry in inhomogeneous interstellar clouds. A&A, 311:690–707, July
1996.

X. Li, A. N. Heays, R. Visser, W. Ubachs, B. R. Lewis, S. T. Gibson, and E. F. van Dishoeck. Photodis-
sociation of interstellar N2. A&A, 555:A14, July 2013. doi: 10.1051/0004-6361/201220625.

M. Ruaud, J. C. Loison, K. M. Hickson, P. Gratier, F. Hersant, and V. Wakelam. Modelling complex
organic molecules in dense regions: Eley-Rideal and complex induced reaction. MNRAS, 447:4004–
4017, March 2015. doi: 10.1093/mnras/stu2709.

M. Ruaud, V. Wakelam, P. Gratier, and I. A. Bonnell. Influence of galactic arm scale dynamics on the
molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds.
A&A, 611:A96, April 2018. doi: 10.1051/0004-6361/201731693.

E. F. van Dishoeck and J. H. Black. The photodissociation and chemistry of interstellar CO. ApJ, 334:
771–802, November 1988. doi: 10.1086/166877.

R. Visser, E. F. van Dishoeck, and J. H. Black. The photodissociation and chemistry of CO isotopologues:
applications to interstellar clouds and circumstellar disks. A&A, 503:323–343, August 2009. doi:
10.1051/0004-6361/200912129.

R. Wagenblast and T. W. Hartquist. Non-equilibrium level populations of molecular hydrogen. II - Models
of the Zeta OPH cloud. MNRAS, 237:1019–1025, April 1989.

V. Wakelam, J.-C. Loison, R. Mereau, and M. Ruaud. Binding energies: New values and impact on the
efficiency of chemical desorption. Molecular Astrophysics, 6:22–35, March 2017. doi: 10.1016/j.molap.
2017.01.002.

V. Wakelam, E. Dartois, M. Chabot, S. Spezzano, D. Navarro-Almaida, J. C. Loison, and A. Fuente.
Efficiency of non-thermal desorptions in cold-core conditions. Testing the sputtering of grain mantles
induced by cosmic rays. A&A, 652:A63, August 2021. doi: 10.1051/0004-6361/202039855.

	LICENSE and copyright
	Historic of modifications
	Introduction
	Installation
	Prerequisites
	Getting the Git repository
	Compilation
	Binaries
	Python script
	Examples
	Typical install
	Custom install

	Starting with Nautilus
	Generic information
	Python scripts help
	Comments in input files
	Main parameter file

	Useful tools
	Cleaning a simulation folder

	Two and three phases model
	Parameters_in
	Automatic test before computation
	Simulation parameters
	Time evolution of the physical structure
	1D simulations
	Self-shielding
	Grain temperature
	Switches
	Gas parameters
	Grain parameters

	Chemical network
	Reaction files
	Reaction types

	Input files
	Output files
	Information : info.out
	Abundances

	Graphic display
	Plot abundances
	Compare abundances
	Evolution of main reactions for a given species

	For developers
	Unitary tests
	How to write documentation with Doxygen
	General information
	For a module
	For a subroutine

	How to generate Doxygen documentation

	Bibliography

